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Virtual machine x Container

Source of images: www.docker.com
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Virtual machine x Container

Virtual Machine
● Virtual Hardware

– CPU
– Memory
– Network

● Any OS
● “Big” overhead

Container
● Isolated Processes
● Limited Resources

– CPU
– Memory
– Network

● Linux (Unix, Win) Only
● “Small” overhead
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Virtual machine x Container – example HTTP server

Virtual Machine
● 2 cores

– shared / overcommit
● 2 GB RAM

– for both OS and HTTP server
● 10 GB storage

– 2 – 4 GB for OS, swap etc.
– 10 MB HTTP server, rest for 

application data and logs

Container
● 2 cores

– shared / overcommit
● 2 GB RAM

– only for HTTP server
● 10 GB storage

– 10 MB HTTP server, rest for 
application data and logs
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Containers Evolution [1]

● 1979 – Unix v7 – chroot
– File access segregation for each process

● 2000 – FreeBSD Jails
– Files system, network, process tree isolation

● 2004 – Solaris Zones
● 2005 – OpenVZ, LXC
● 2007 – Control Groups (cgroups)
● 2008 – LXC with cgroups
● 2013 – Docker
● 2014 – LXC 1.0 – unpriviledged containers support

[1] https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
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Linux Containers
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Change root (chroot)

● File system isolation
– Processes cannot acces files out of the new root tree
– Shared sys and proc files / security flaws when root access allowed

● Shares host networking
● OpenSSH server access restriction [1]

chroot option newroot [command [args]…]

  --groups=groups

  --userspec=user[:group]

[1] https://www.tecmint.com/restrict-ssh-user-to-directory-using-chrooted-jail/
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Open VZ (Open Virtuzzo)

● Custom kernel – based on RHEL7
● Specific distro 
● Isolation & limitation

– File system
– Process tree
– Network

● Supports live migration
● No active development – last release 2016
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LinuX Containers (LXC)

● Kernel namespaces (ipc, uts, mount, pid, network and user)
● Apparmor and SELinux profiles
● Seccomp policies
● Chroots (using pivot_root)
● Kernel capabilities
● CGroups (control groups)
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LinuX Containers (LXC)

● liblxc
● API libraries

– python3, lua, Go, ruby, ...
● Set of CLI tools
● Set of templates
● LXCFS

– Solves systemd inside unpriviledged containers
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LinuX Containers (LXC) – Networking

● Type
– none – shared with host
– empty – loopback only
– veth – virtual ethernet
– vlan – support for vlan on a host’s NIC
– macvlan – new MAC address on host’s NIC
– ipvlan – new IP address on host’s NIC
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LinuX Containers (LXC) – Storage

● Backing Storage Types
– btrfs, zfs, rbd
– dir – default
– lvm, loop – binary images
– overlay – for clones (snapshot)

● Ephemeral – remove after stop
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LinuX Containers (LXC) – Example

● lxc-create -t ubuntu -n my-ubuntu
● lxc-start -n my-ubuntu -d
● lxc-ls -f
● lxc-attach -n my-ubuntu
● lxc-stop -n my-ubuntu
● cat /var/lib/lxc/my-ubuntu/config
● lxc-destroy -n my-ubuntu
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systemd-nspawn

● Container System for systemd based distros
● Similar to chroot

– Full filesystem virtualization
– Independent process tree
– IPC subsystems and host and domain name independent

● Containers may run as a systemd service
– nspawn@.service template
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systemd-nspawn – Networking

● Private – should container isolate from host’s network
● VirtualEthernet
● MACVLAN
● IPVLAN
● Zone – isolate containers from each other
● Port – allow port forwarding from host for private networking
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systemd-nspawn – Storage

● Binary images
– Raw
– Block device
– MBR, GPT, EFI

● Ephemeral
● Templates

– BTRFS based snapshots
● Volatile
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systemd-nspawn – Example

● debootstrap focal /var/lib/machines/my-ubuntu
● systemd-nspawn -M my-ubuntu passwd
● systemd-nspawn -M my-ubuntu --hostname my-ubuntu
● systemd-nspawn -M my-ubuntu --boot
● machinectl list-images
● machinectl list
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Docker
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Docker

● Single process virtualization (service)
● Ecosystem for application distribution

– Docker Hub
● Free/paid storage for images ready to use

– Dockerfile
● Yaml description of how to create a service

– Docker Compose
● Applications with more services

– Docker Swarm – orchestration tool
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Docker Engine

Image from https://www.docker.com/products/container-runtime
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Dockerfile

● Description of a service – YAML text format
● Base image

– Static linked binary
– Prepared Linux distribution – popular Alpine, Ubuntu, Debian, CentOS, ...
– Any Docker image

● Layers
– Executing a command (add, copy, run) creates a new layer
– Final image contains many layers – try to minimize by merging commands

● Multi-stage builds
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Dockerfile – Example

FROM ubuntu:latest

RUN apt-get update && \
    apt-get install -y nginx && \
    apt-get autoremove && \
    rm -rf /var/lib/apt/lists/*

COPY my-awesome-app /var/www/html

FROM nginx:latest

COPY my-awesome-app /var/www/html
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Docker – Run Container

● Start the nginx container in background, mount data and 
configuration and expose the host’s port 8080

docker run --name my-container \
-v /path/to/data:/var/www/html/data \
-v /path/to/config/nginx.conf:/etc/nginx/nginx.conf:ro \
-d -p 8080:80 nginx:latest
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Docker – Networking

● Implicit Docker network
– Masquerade
– Port Forwarding

● Custom networks
– Groups of containers share one network

● Modes
– bridge, host, overlay, macvlan, ipvlan, none 
– container
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Docker – Networking

● IPv6
– Not enabled by default
– Customization on host needs to be done

● Firewall
– Docker add PREROUTING rules to firewall
– These are always executed BEFORE rules added by e.g. UFW
– IP addresses in rules are DYNAMIC, i.e. the order of starting services depends
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Docker Compose

● Starting containers from command line is tedious
● Compose file describes all options for command line in YAML 

based text file
● More than one container can be described
● Implicit private network between containers established
● Exposed ports have to be explicitly defined
● Container names are resolvable from all containers within 

Compose file
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Docker Compose – Example

version: "2.4"
services:
  web:
    build:
      dockerfile: webapp/Dockerfile
      context: webapp/.
    image: registry.example.org:443/webapp
    volumes:
      - webapp:/var/www/html
    ports:
      - 8080:80
    environment:
      MYSQL_SERVER: mysql
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Docker Compose – Example cont.

  mysql:
    image: mysql:latest
    volumes:
      - mysql_data
    environment:
      PASSWORD: mysql
      DATABASE: webapp
volumes:
  - mysql_data
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Docker Compose – Run a service

● docker-compose build
● docker-compose up
● docker-compose push
● docker-compose pull
● docker-compose up -d
● docker-compose stop
● docker-compose down
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Docker Orchestration

● Swarm
– Embedded in docker engine
– Provides execution, replication, load balancing 

● Kubernetes
– Complex ecosystem for container management
– Docker runtime support deprecated since Dec. 2020
– Supports Open Container Initiative (OCI) images
– Containerd and CRI-O as runtime
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Questions?
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