
Linux Containers

From chroot to Docker

Ondřej Votava

2

Content

● Virtual Machine x Container
● Containers Evolution
● chroot
● Open VZ
● LXC/LXD
● systemd-nspawn
● Docker

3

Virtual machine x Container

Source of images: www.docker.com

4

Virtual machine x Container

Virtual Machine
● Virtual Hardware

– CPU
– Memory
– Network

● Any OS
● “Big” overhead

Container
● Isolated Processes
● Limited Resources

– CPU
– Memory
– Network

● Linux (Unix, Win) Only
● “Small” overhead

5

Virtual machine x Container – example HTTP server

Virtual Machine
● 2 cores

– shared / overcommit
● 2 GB RAM

– for both OS and HTTP server
● 10 GB storage

– 2 – 4 GB for OS, swap etc.
– 10 MB HTTP server, rest for

application data and logs

Container
● 2 cores

– shared / overcommit
● 2 GB RAM

– only for HTTP server
● 10 GB storage

– 10 MB HTTP server, rest for
application data and logs

6

Containers Evolution [1]

● 1979 – Unix v7 – chroot
– File access segregation for each process

● 2000 – FreeBSD Jails
– Files system, network, process tree isolation

● 2004 – Solaris Zones
● 2005 – OpenVZ, LXC
● 2007 – Control Groups (cgroups)
● 2008 – LXC with cgroups
● 2013 – Docker
● 2014 – LXC 1.0 – unpriviledged containers support

[1] https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016

7

Linux Containers

8

Change root (chroot)

● File system isolation
– Processes cannot acces files out of the new root tree
– Shared sys and proc files / security flaws when root access allowed

● Shares host networking
● OpenSSH server access restriction [1]

chroot option newroot [command [args]…]

 --groups=groups

 --userspec=user[:group]

[1] https://www.tecmint.com/restrict-ssh-user-to-directory-using-chrooted-jail/

9

Open VZ (Open Virtuzzo)

● Custom kernel – based on RHEL7
● Specific distro
● Isolation & limitation

– File system
– Process tree
– Network

● Supports live migration
● No active development – last release 2016

10

LinuX Containers (LXC)

● Kernel namespaces (ipc, uts, mount, pid, network and user)
● Apparmor and SELinux profiles
● Seccomp policies
● Chroots (using pivot_root)
● Kernel capabilities
● CGroups (control groups)

11

LinuX Containers (LXC)

● liblxc
● API libraries

– python3, lua, Go, ruby, ...
● Set of CLI tools
● Set of templates
● LXCFS

– Solves systemd inside unpriviledged containers

12

LinuX Containers (LXC) – Networking

● Type
– none – shared with host
– empty – loopback only
– veth – virtual ethernet
– vlan – support for vlan on a host’s NIC
– macvlan – new MAC address on host’s NIC
– ipvlan – new IP address on host’s NIC

13

LinuX Containers (LXC) – Storage

● Backing Storage Types
– btrfs, zfs, rbd
– dir – default
– lvm, loop – binary images
– overlay – for clones (snapshot)

● Ephemeral – remove after stop

14

LinuX Containers (LXC) – Example

● lxc-create -t ubuntu -n my-ubuntu
● lxc-start -n my-ubuntu -d
● lxc-ls -f
● lxc-attach -n my-ubuntu
● lxc-stop -n my-ubuntu
● cat /var/lib/lxc/my-ubuntu/config
● lxc-destroy -n my-ubuntu

15

systemd-nspawn

● Container System for systemd based distros
● Similar to chroot

– Full filesystem virtualization
– Independent process tree
– IPC subsystems and host and domain name independent

● Containers may run as a systemd service
– nspawn@.service template

16

systemd-nspawn – Networking

● Private – should container isolate from host’s network
● VirtualEthernet
● MACVLAN
● IPVLAN
● Zone – isolate containers from each other
● Port – allow port forwarding from host for private networking

17

systemd-nspawn – Storage

● Binary images
– Raw
– Block device
– MBR, GPT, EFI

● Ephemeral
● Templates

– BTRFS based snapshots
● Volatile

18

systemd-nspawn – Example

● debootstrap focal /var/lib/machines/my-ubuntu
● systemd-nspawn -M my-ubuntu passwd
● systemd-nspawn -M my-ubuntu --hostname my-ubuntu
● systemd-nspawn -M my-ubuntu --boot
● machinectl list-images
● machinectl list

19

Docker

20

Docker

● Single process virtualization (service)
● Ecosystem for application distribution

– Docker Hub
● Free/paid storage for images ready to use

– Dockerfile
● Yaml description of how to create a service

– Docker Compose
● Applications with more services

– Docker Swarm – orchestration tool

21

Docker Engine

Image from https://www.docker.com/products/container-runtime

22

Dockerfile

● Description of a service – YAML text format
● Base image

– Static linked binary
– Prepared Linux distribution – popular Alpine, Ubuntu, Debian, CentOS, ...
– Any Docker image

● Layers
– Executing a command (add, copy, run) creates a new layer
– Final image contains many layers – try to minimize by merging commands

● Multi-stage builds

23

Dockerfile – Example

FROM ubuntu:latest

RUN apt-get update && \
 apt-get install -y nginx && \
 apt-get autoremove && \
 rm -rf /var/lib/apt/lists/*

COPY my-awesome-app /var/www/html

FROM nginx:latest

COPY my-awesome-app /var/www/html

24

Docker – Run Container

● Start the nginx container in background, mount data and
configuration and expose the host’s port 8080

docker run --name my-container \
-v /path/to/data:/var/www/html/data \
-v /path/to/config/nginx.conf:/etc/nginx/nginx.conf:ro \
-d -p 8080:80 nginx:latest

25

Docker – Networking

● Implicit Docker network
– Masquerade
– Port Forwarding

● Custom networks
– Groups of containers share one network

● Modes
– bridge, host, overlay, macvlan, ipvlan, none
– container

26

Docker – Networking

● IPv6
– Not enabled by default
– Customization on host needs to be done

● Firewall
– Docker add PREROUTING rules to firewall
– These are always executed BEFORE rules added by e.g. UFW
– IP addresses in rules are DYNAMIC, i.e. the order of starting services depends

27

Docker Compose

● Starting containers from command line is tedious
● Compose file describes all options for command line in YAML

based text file
● More than one container can be described
● Implicit private network between containers established
● Exposed ports have to be explicitly defined
● Container names are resolvable from all containers within

Compose file

28

Docker Compose – Example

version: "2.4"
services:
 web:
 build:
 dockerfile: webapp/Dockerfile
 context: webapp/.
 image: registry.example.org:443/webapp
 volumes:
 - webapp:/var/www/html
 ports:
 - 8080:80
 environment:
 MYSQL_SERVER: mysql

29

Docker Compose – Example cont.

 mysql:
 image: mysql:latest
 volumes:
 - mysql_data
 environment:
 PASSWORD: mysql
 DATABASE: webapp
volumes:
 - mysql_data

30

Docker Compose – Run a service

● docker-compose build
● docker-compose up
● docker-compose push
● docker-compose pull
● docker-compose up -d
● docker-compose stop
● docker-compose down

31

Docker Orchestration

● Swarm
– Embedded in docker engine
– Provides execution, replication, load balancing

● Kubernetes
– Complex ecosystem for container management
– Docker runtime support deprecated since Dec. 2020
– Supports Open Container Initiative (OCI) images
– Containerd and CRI-O as runtime

32

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

