

Czech Technical University in Prague http://www.cvut.cz

Milan Rollo, Martin Selecký, Tomáš Meiser {rollom, selecmar, meiset}@fel.cvut.cz

> Agent Technology Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

9th February 2012

Outline

- available UAVs
 - Procerus UAV
 - Mikrokopter
 - LinkQuad
 - * Light sports aircraft
- hardware related issues
 - hw integration
 - autopilots
 - data/video transmission
- research issues
 - trajectory planning (AA*, HexGrid, wind)
 - autonomous behavior of UAVs (team action planning)
 - collision avoidance
 - human-machine interface
 - mixed simulation
- legal issues
- videos

From Software to Hardware

AgentFly multi-agent system for air-traffic control (both civilian and UAS oriented)

- autonomous agents for UAS collision avoidance
- AgentFly for tactical UAS control
- application for NextGen ATC
- human-machine interface design
- deployment of AgentFly to UAS platform
 - integration of imprecise flight execution
 - adaptation of parameters for current environment
 - flight execution monitoring
- Information collection tasks
 - exploration
 - persistent surveillance
 - tracking
 - comm. network improvement

Procerus UAV

- Procerus UAS
 - made in US (export regulated by ITAR license)
 - fixed wing configuration EPP foam (wingspan 183 cm)
 - 4x 4Ah Li-Pol batteries for electronics and engine
 - on-board CPU modules autopilot, image processing, AgentFly control

SNUSSOUN

- modems for data communication (869MHz) and video transmission (2.4GHz)
- GPS unit, three-axis gyros, accelerometers, magnetometer, pressure-based airspeed and altimeter
- gimbal color camera Sony, retractable system, motorized pan/tilt control, 10x zoom
- ~40 minutes endurance, flight speed 50-100 km/h
- take-off weight <7kg</p>

funded by Ministry of Defence of the Czech Republic, started July 2009

Mikrokopter

- Mikrokopter VTOL
 - modular multicopter system
 - aerial platform from 4 to 12 motors
 - capable of autonomous flight with NaviCtrl and GPS
 - optional control by cell phone (via Bluetooth)
 - flight behavior fully adjustable by MKTool
 - engine power 4 x 110 W
 - payload 300-700g (depends on battery)
 - 15-45 minutes endurance, flight speed ~35 km/h
 - Ix Li-Pol battery 11,1-14,6V
 - max. altitude 350 m
 - take-off weight <3kg</p>

LinkQuad

- LinkQuadVTOL
 - similar to Mikrokopter
 - 4 engines, Li-Pol battery
 - 2x onboard Gumstix SOC
 - payload ~500g
 - 20 minutes endurance, flight speed ~35 km/h
 - take-off weight <3kg</p>

Hardware

- autopilots
 - Kestrel
 - LinkBoard
 - Mikrokopter Flight Control
- communication
 - RC controllers (Futaba, Graupner)
 - ZigBee
 - data modem (Microhard Nano)
 - analog video
 - Gumstix wi-fi
 - blue tooth
- onboard computers
 - Gumstix ARM Cortex A8
- cameras
 - Sony BTC88R
 - DPX 201

Research Issues

- trajectory planning (AA*, HexGrid, wind)
 - Iimited computational resources
 - dynamic environment
 - no flight zones
 - terrain
 - other assets
 - replanning

Research Issues 2

- autonomous behavior
 - combining surveillance, tracking, collision avoidance, etc.
 - multi-layered planning architecture
 - real-time coordination

- collision avoidance
 - cooperative/ * noncooperative
 - exchange of flight trajectories
 - conflict detection and resolution

mixed simulation

- combination of simulated and real units
- rapid development of distributed algorithms
- Iarge-scale tests

Human – Machine Interface Design

- coordination of team of heterogeneous assets by one operator
 - Information gathering and fusing
 - visualize common picture
 - collaboration with DCGI
 - deliver commands to units

- project D₃CoS Designing Dynamic Distributed Cooperative Human-Machine Systems
- application domains
 - aeronautics
 - automotive
 - maritime
- funded by Artemis Joint Undertaking since March 2011

Deployment on Light Sports Aircrafts

project SAFEFLY

advisory tool for cooperative and non-cooperative collision avoidance for domain

- of light sports aircrafts
- cooperation with industrial partners
 - TL elektronic (HW manufacturer)
 - F AIR (flight school)
- Integration of various HW devices
 - EFIS & EMS Integra
 - Zaon / FLARM
 - GPS, radio modems
- applied research, SW and HW prototype

funded by Technology Agency of the Czech Rep. (TACR), started January 2011

Notes

- research funding
 - Czech Government (MoD, TACR)
 - European Commission
 - industry partners (both EU and US)
 - US defense agencies
- legal issues
 - Civil Aviation Authority (ÚCL)
 - regulation L2, annex X
 - insurance
 - accidents (UZPLN)
 - radio spectrum

