Planning in Mobile Robotics

A Short Overview of Research Streams

Jan Faigl

Department of Computer Science and Engineering

Czech Technical University in Prague

29/01/2013

Jan Faigl, 2013

CTU, FEE, Dept. of Computer Science and Engineering - KUKAS'13

Personal overview

- Jan Faigl (*1979)
- 2013 dpt. of Computer Science and Engineering (ATG)
- 2003–2012 dpt. of Cybernetics (IMR)
- 2010 Ph.D. thesis "Multi-Goal Path Planning in Cooperative Sensing"
- Research Interest (related to mobile robotics)
 - multi-goal path and motion planning, computational geometry, optimal sampling design, *multi-robot system*
 - robotic systems for autonomous long-term environment monitoring
- Personal Curiosities
 - FreeBSD at the workstation

since \sim 2000 (starting with FreeBSD 3.4)

Vegetarian

since ~ 1997

Hiking, biking, swimming, running

Multi-Goal Path Planning for Autonomous Mobile Robots

Inspection, surveillance or environment monitoring missions.

E.g., Visit goal regions to take a sample measurement at each goal

The proposed planning framework is based on Self-Organizing Map

Jan Faigl, 2013

CTU, FEE, Dept. of Computer Science and Engineering - KUKAS'13

Multi-Goal Path Planning for Autonomous Mobile Robots

Inspection, surveillance or environment monitoring missions.

E.g., Visit goal regions to take a sample measurement at each goal

Problem Specification:

- A map of the environment
- A set of goals
- A shortest path visiting all requested goals
- · Sensing and motion constraints
- Autonomous navigation capabilities

The proposed planning framework is based on Self-Organizing Map

Multi-Goal Path Planning for Autonomous Mobile Robots

Inspection, surveillance or environment monitoring missions.

E.g., Visit goal regions to take a sample measurement at each goal

Problem Specification:

- A map of the environment
- A set of goals
- A shortest path visiting all requested goals
- · Sensing and motion constraints
- · Autonomous navigation capabilities

The proposed planning framework is based on Self-Organizing Map

Unifying Planning Framework

Faigl J., Approximate Solution of the Multiple Watchman Routes Problem with Restricted Visibility Range, IEEE Transactions on Neural Networks, 21(10):1668–1679, (2010).

Faigl J., Přeučil L., Inspection planning in the polygonal domain by Self-Organizing Map, Applied Soft Computing, 11(8):5028–5041, (2011).

Faigl J., Vonásek V., Přeučil L., *Visiting Convex Regions in a Polygonal Map*, Robotics and Autonomous Systems, doi:10.1016/j.robot.2012.08.013.

Autonomous Inspection / Surveillance

The problem is to maximize the frequency of goals' visits.

Visit must be precise and reliable SURFNav - Robust and reliable autonomous navigation with mathematical model of the location uncertainty evolution

$$\begin{aligned} \boldsymbol{A}_{i+1} &= \boldsymbol{R}_i^T \boldsymbol{M}_i \boldsymbol{R}_i \boldsymbol{A}_i \boldsymbol{R}_i^T \boldsymbol{M}_i^T \boldsymbol{R}_i + \boldsymbol{R}_i^T \boldsymbol{S}_i \boldsymbol{R}_i, \\ \boldsymbol{M}_i &= \begin{bmatrix} 1 & 0 \\ 0 & m(a_i, a_{i+1}, \mathcal{M}) \end{bmatrix}, \boldsymbol{S}_i = \begin{bmatrix} s_i \eta^2 & 0 \\ 0 & \tau^2 \end{bmatrix} \end{aligned}$$

 $m(a_i, a_{i+1}, \mathcal{M})$ - model of the visible landmarks $\eta, \tau \sim$ "odometry and heading error" (variances)

Krajník T., Faigl J., Vonásek V., Košnar K., Kulich M., Přeučil L., *Simple yet stable bearing-only navigation*, Journal of Field Robotics, 27(5):511–533, 2010.

We proposed planning framework considering model of the localization uncertainty to improve reliability and robustness of autonomous navigation.

Autonomous Inspection / Surveillance

The problem is to maximize the frequency of goals' visits.

Visit must be precise and reliable SURFNav - Robust and reliable autonomous navigation with mathematical model of the location uncertainty evolution

$$\begin{aligned} \boldsymbol{A}_{i+1} &= \boldsymbol{R}_i^T \boldsymbol{M}_i \boldsymbol{R}_i \boldsymbol{A}_i \boldsymbol{R}_i^T \boldsymbol{M}_i^T \boldsymbol{R}_i + \boldsymbol{R}_i^T \boldsymbol{S}_i \boldsymbol{R}_i, \\ \boldsymbol{M}_i &= \begin{bmatrix} 1 & 0 \\ 0 & m(\boldsymbol{a}_i, \boldsymbol{a}_{i+1}, \mathcal{M}) \end{bmatrix}, \boldsymbol{S}_i = \begin{bmatrix} s_i \eta^2 & 0 \\ 0 & \tau^2 \end{bmatrix} \end{aligned}$$

 $m(a_i, a_{i+1}, \mathcal{M})$ - model of the visible landmarks $\eta, \tau \sim$ "odometry and heading error" (variances)

Krajník T., Faigl J., Vonásek V., Košnar K., Kulich M., Přeučil L., Simple yet stable bearing-only navigation, Journal of Field Robotics, 27(5):511–533, 2010.

We proposed planning framework considering model of the localization uncertainty to improve reliability and robustness of autonomous navigation.

Autonomous Navigation - Experimental Results

Real overall error at the goals decreased from 0.89 m \rightarrow 0.58 m (improvement about 35%)

Overall error at the goals decreased from 16.6 cm ightarrow 12.8 cm

Improvement of the success of the goals' visits $83\% \rightarrow 95\%$

Faigl J., Krajník T., Vonásek V., Přeučil L., On Localization Uncertainty in an Autonomous Inspection, ICRA, 1119–1124, 2012.

SyRoTek - A Robotic System for Education

- · Design of the system architecture
- · Implementation of the core system functions

Kulich, M., Chudoba, J., Košnar, K., Krajník, T., Faigl, J., Přeučil, L., *SyRoTek-Distance Teaching of Mobile Robotics*, IEEE Transactions on Education, doi: 10.1109/TE.2012.2224867.

de agent de technology de center

Jan Faigl, 2013

CTU, FEE, Dept. of Computer Science and Engineering - KUKAS'13

7/13

Autowaves based Path Planning

- *Autowaves* a class of nonlinear waves that propagate through an active media.
- *Reaction-Diffusion* (RD) models dynamical systems capable to reproduce the autowaves.
- RD model describes spatio-temporal evolution of two state variables $\dot{u} = \varepsilon (u - u^3 - v + \phi) + D_u \triangle u$ $\dot{v} = (u - \alpha v + \beta) + D_v \triangle u$

FitzHugh-Nagumo (FHN) model

Vázquez-Otero A., Faigl J., Muñuzuri A. P., Path Planning based on Reaction-Diffusion Process, IROS, 896–901, 2012.

Surveillance with Swarm of MAVs

Optimal static coverage of areas using swarm of MAVs while dynamic feasibility of the coverage is guaranteed.

An unsupervised learning would provide on-line problem solving.

Cooperation with Prof. Vijay Kumar (GRASP, PENN)

Vision based relative localization (enabling technology)

On-board image processing for Gumstix Overo/Caspa

processing up to 60 Hz

Faigl J., Chudoba J., Krajnik T., Saska T., Přeučil L., Low-Cost Embedded System for Relative Localization in Robotic Swarms, ICRA, 2013.

Surveillance of Objects of Interest in 3D

• Multi-goal path planning in 3D considering motion and sensing constraints.

The idea is based on SOM for the WRP (2D)

- · Motion constraints considered as probabilistic roadmap
- · Fast visibility queries are the key issue
- · Objects can be covered from covering spaces

Janoušek P., Faigl J., Speeding Up Coverage Queries in 3D Multi-Goal Path Planning, ICRA, 2013.

Self-Organizing Maps for Multi-Goal Path Planning

- Problems:
 - · Optimal sampling design and motion constraints
 - High-dimensional configuration spaces
 - · Models of sources of uncertainties

planning in belief space

- Framework for Planning Robotic Missions:
 - · Inspection, Coverage, Surveillance
 - Environment Monitoring and Data Collections

Post-Doc GAČR (2013-2015)

Future Work

Multi-Goal Path Planning in Spatio-Temporal Spaces

- Find a short and low risk path for an autonomous underwater vehicle
- Consider ocean currents influencing the autonomous navigation

Future Work

Future Work

Thank you!

Jan Faigl, 2013