(Towards) Agent Computing for Intelligent Transport Systems

Michal Jakob, Jan Hrnčíř, Zbyněk Moler Agent Technology Center, Czech Technical University in Prague <u>http://agents.fel.cvut.cz/topics/intelligent_transport_systems</u>

Trends/Vision

Flexible Transport Markets

 Real-time matchmaking between demand and supply => mobility as a service

Layered Approach

Data Integration, Visualization and Analysis

Agent-based Simulation (What-if)

Planning, Coordination and Optimization

Data Integration and Analysis

Main Data Sources

OSM road networks

Real-time Level of Service (FCD)

GTFS / JDF Timetables

Real-time Origin-Destination Matrices

Transport Network Analysis (BP Jan Nykl)

- Input: Timetables & stops of the PTN
- Output: Various PTN metrics
 - (duration of journey, number of interchanges, harness, PTN area and length etc.)
- Two modes of analysis
 - Many-to-many
 - One-to-others
- Time-expanded graph & Dijkstra used for finding a route in the PT

(Image from OpenTripPlanner Analyst)

Simulation

What-If: Simulation Modeling

Estimate the behavior of the transport system under different circumstances

Simulation Inputs and Outputs

• Policies: congestion charge, parking regulation, • Public transport: routes and schedules, ticket prices • Planned events: big concerts, football matches Scenarios Unexpected disruptions: accidents, bad weather • Novel transport schemes: ridesharing, car sharing, bike sharing • Travel: travel times, costs, modal split, ... • Efficiency: utilization, energy consumption, Metrics congestion Environmental impact: emissions, noise,...

Agent-based Approach

AgentPolis Framework: *Fully* Agent-Based Mobility Modelling

AgentPolis Framework - Demo

Research Areas

- Simulating transport environments (physics of transport)
 - abstractions for transport system models
 - efficient execution via discrete-event simulation
 - massively repeated journey planning (caching)
- Modeling human decision making (psychology of transport)
 - activity scheduling
 - plausible decision models
 - plausible memory models
 - cooperation with Centrum dopravniho vyzkumu (CDV)
- Simulation-aided Design of ITS

AgentPolis Models

- Multi-modal Urban Mobility
- Fare Inspection
- Real-time Ridesharing
- Auction-based Dynamic Taxi Pricing
- (Urban Parcel Delivery Logistics)

Fare Inspection Model

Transport Planning, Coordination and Optimization

Multi-Criteria Multi-Modal Journey Planning

Multi-Critics Journey Planning

Separates plan search control from plan evaluation

Example: Planning Graph

Helsinki statistics:

Graph	Nodes	Edges
РТ	50320	764306
Road	87752	190822
Walk	160947	371637
Bike	156016	403750
R+B+w	404715	966209
Time dependent	256840	1401838

Example: Journey Response

Open Bicycle Route Planner (BP Marcel Nemet)

- Problem: Find a bicycle-friendly trip from origin to destination
 - Take into account trip duration & elevation
- Data
 - OSM maps
 - recommended routes for cyclists (by Auto*mat)
 - SRTM elevation data
- Solution approach: A*

Multi-Agent Transport Coordination

Ride Sharing on Timetabled Services

Taxi Ridesharing (BP Petr Mezek)

• Real-time coordination of shared taxi rides

Auction-based Dynamic Pricing (BP Jan Zikeš)

15

10^L

8

10

- Auction-based taxi allocation
- Passengers willing to pay more travel first in the peak time
- Passengers willing to wait travel cheapers

interval (35, 45)

time in hours

14

12

16

20

18

Flexible feeder services (BP Tomáš Grubhoffer)

- Find feeder shared rides connecting to scheduled train service
- Solution approach
 - Find a single-agent plan for each agent
 - Cluster agents into groups for the first mile according to (First PT stop, Departure time, Location of origin)
- Find a joint plan for each group of agents

Conclusions

Simulation-aided Design of ITS

SUstainable and PERsuasive Human Users mobility in future cities

We believe that in a great mobility project people should be protagonists.

SUPERHUB

•

20 partners

•

2011-2014

FP7 Low-carbon multi-modal mobility and freight transport Future and Emerging Technologies (ICT-2011.6.6)

Our role

- Dynamic mobility matchmaking and Ecoplanner
- Policy-aware mobility simulator

RODOS Rozvoj dopravních systémů

- Projekt Centra competence TAČR 2012-2016
- Spolupráce: 3 univerzit, 1
 výzkumného centra 6
 firem
- ČVUT FEL vede pracovní balíček 6: Metody modelování a optimalizace multimodální mobility